Stress analysis is used to evaluate the effects of pressure, static and dynamic loads on the piping. We model the piping systems & its connected equipment, other process equipment of the system and experiment by applying various static and dynamic loads through our model. We assess the results and validate the model to comply to the Industry standard. The latest case study performed for Stress analysis of pipes exemplifies Elixir Engineering commitment to ensuring the safety and reliability of industrial processes.
Structural Analysis studies the effect of external forces on tangible objects like constructed structural elements and estimates the behavior of various structures when different loads act on them. A thorough Structural Analysis aids in the design and determination of element sizes and in selecting the right material for structural elements.
Understanding meshing requirement and quality are highly important in Computation Fluid Dynamics. Our CFD team possesses hands-on experience, skill and complete understanding of dynamics and fluid physics. We use various fluid simulation strategies, techniques and advanced software to perform an array of engineering activities such as calculating performance, validating design, evaluation of operating conditions etc., and provide optimum solutions with lesser downtime.
Vibration analysis identifies and measures misalignment, bearing defects, imbalance, mechanical looseness, bent shafts, gear drive faults, and resonance present in an equipment. Information from this analysis could be used for evaluating the root cause of vibration anomalies and correction can be provided.
In production process, flaring is the controlled burning of natural gas. It is very important to determine the thermal radiation and estimate stack height during flaring. Our comprehensive study will outline the extent of flare radiation and dispersion to safely dispose of the gas during power outages, failure of equipment, and other emergencies or ‘upsets’ during processing or drilling operations through flaring or ventilation.
Evaluating the extent of surge for hydraulic systems is of paramount importance to avoid leakage and failure of the whole system. Sudden changes in Surge pressure lead to damage to pipeline, damage to equipment, bursting of pipeline etc., A thorough Surge Analysis estimates the system, determines the reason for surge and will help in selecting the suitable mitigation recommendation. Our team of experienced hydraulic engineers equipped with advanced software can ensure that the client’s requirements are fulfilled to the highest standards
Finite Element Analysis (FEA) is an intelligent and computerized method for forecasting how a product or engineering component will react to real-world forces like vibration, heat, fluid flow and other physical effects. FEA predicts whether the products will fail, collapse, wear out or work the way it was designed. Basically, it is an advanced system used in design and to augment/replace experimental testing.
FEA is practiced in almost all engineering disciplines. It is often an alternative to the experimental test method set out in many standards. The idea is that you can reach an approximate solution to any complex engineering problem by dividing the structure/component into smaller more manageable (finite) elements.
FEA Software is used in many engineering disciplines for estimation of structural strength and behavior, modeling, simulation, and design optimization. It is also used in Piping Design for Finite Element Analysis where ‘rigidity’ and not ‘flexibility’ is a governing factor.
Experienced piping designers and engineers are aware of the limitations of beam element software(CAESAR II for example) for specific scenarios and problems. These software applications may indicate a stress or loading issue that may not exist and sometimes fail to point out the issues that there are. A typical example is when larger diameter pipes and their intersections are inadequately modeled by beam theory.
There are also limitations and errors within the standards and codes applied, such as B31 codes. It is well-known that the stress intensification factors (SIF)s and flexibilities of intersections are inaccurate (when the branch and run pipe diameters differ). These inconsistencies unnecessarily shoot up costs to fix issues that don’t exist and also unsafe design when results don’t accurately display problems that do exist.
SIFs indicated by various codes are limited in their scope and often off the mark. For instance, for attaching pipes or structural supports to a bend, what should the SIF be? Piping codes are inadequate to address these and other practical engineering challenges that designers face daily.
Pressure Vessel FEA and Piping FEA offer practical benefits to many of these scenarios. FEA Software Applications are created to address Piping And Pressure Vessel problems that beam element theory and code limitations cannot resolve.
In piping and pressure vessel geometries that have large D/t ratios and/or external pressure, buckling is a cause for concern. Finite Element Analysis of Pressure Vessels helps analyze buckling with traditional bifurcation and elastic-plastic collapse study.
Through-the-wall thermal gradients often result in significant stresses. FEA Software can analyze steady state transient thermal stresses.
When Is It Good To Conduct Piping FEA?
Critical Use Cases For Finite Element Analysis:
Process Optimization in terms of Capacity and Debottlenecking studies is a strategic decision making where it helps to improve utilization and avoid any uncertainties. This study also helps in efficiently upgrade plans when the primary situation changes. It helps in boosting the quality of program and giving the opportunity to optimize the return on investment in process change. Latest tools are being utilized by our manpower in rendering these services to ensure optimum quality.
In today’s challenging economic conditions, the debottlenecking of existing oil and gas plants appears very attractive. Most plants have some intrinsic, though mostly hidden, opportunities to boost their production capacities and efficiencies through troubleshooting and debottlenecking. These efforts can be carried out quickly and safely, at a fraction of the cost required to build new facilities of equivalent capacity. Valuable guidelines are offered here for debottlenecking operations, using a successful, real-life case study as an example.
To survive this extraordinary downturn, most companies have been seeking quick means to bolster the dwindling bottom lines on their balance sheets. The primary ways to achieve this goal are to boost plant production (and, thereby, revenues), reduce production costs, or both. In this volatile market, not many companies are willing to shell out large amounts of capital to finance new projects, or even a major expansion of an existing facility. What, then, becomes the most economically attractive and feasible option for raising the bottom line?
The good news is that options are still available to oil and gas processors to implement such plans without making large investments. One such option is to do a bit of “treasure hunting” in their own backyards—i.e., looking for inconspicuous opportunities that are already present in their existing plants.
Experience shows that most processing plants do have a number of hidden opportunities that can be easily capitalized on to better the company’s financial health. This option typically does not require major changes or large investments. Capitalizing on hidden opportunities usually requires a fraction of the cost and time required to build a grassroots facility of equivalent capacity. If such opportunities are discovered in an existing plant, the owner is unlikely to hesitate to reach for this “low-hanging fruit.”
Debottlenecking of existing oil-gas plants brings significant economic benefits
Key Benefits
Applications
Where and how to find hidden opportunities. Most plants have sweet spots, or “opportunity packs,” from which such initiatives can be developed. However, constraints or bottlenecks may hold back their productive exploitation. Only experienced eyes can recognize and weigh the worth of these opportunities against the operational challenges present in a brownfield plant environment.
Four such prospective opportunity packs include:
These opportunities can be realized through troubleshooting and debottlenecking. Such projects typically start with a test run that pushes the plant to its limits, with an occasional adjustment of equipment and operating parameters, based on the judgement of operating personnel. These steps should be followed by a comprehensive feasibility report that includes a cost-benefit analysis, which will help develop a work plan for the entire program.
An exemplary case history. A successful debottlenecking project in a gas treatment and NGL plant resulted in a substantial capacity increase of 33%, or one-third of the plant’s original nameplate capacity of 450 MMscfd. At this plant, a number of crippling process and equipment problems were redressed to push the plant’s onstream factor from a range of 90%–94% to as high as 96%–97%, bringing a significant financial benefit.
The execution strategies applied demonstrate the importance of good planning and the depth of technical involvement required to carry out a successful debottlenecking project at a running plant. The details of this study are shared to guide and assist plant personnel wishing to undertake debottlenecking projects in the future. Although the referenced plant is a gas plant, the strategies and techniques used can be applied to debottlenecking efforts for any process plant, be it an oil processing or chemical production plant.
Sales/product gas quality was also found to be over-specified in the design, compared to what customers required and what was outlined in the supply contract. Approximately 60%–90% of sales gas was consumed by local power and desalination plants, which could accept up to 50-ppm H2S, with no stated limit on CO2, provided that the minimum heating value requirement of 910 Btu/scf was met.
The gas injection compressors for enhanced oil recovery (EOR) were another main consumer. These compressors could accept H2S of similar quality but required no limit on CO2, as long as the gas was dry, as specified
Since the deviations were on the lower side, a large opportunity was foreseen for this plant. A 10% increase in capacity appeared to be possible by changing some operating parameters and process conditions. Hardly any physical changes in plant and equipment, or any capital investment, was envisaged. These items were chosen for Stage 1 since they could be completed quickly, and the economic returns could begin earlier. Due to a reduction in acid gas content (H2S + CO2) in the feed gas and higher H2S allowance in the sales gas, minor changes to processes and operations were adequate to achieve the target:
However, some equipment, process systems and piping required refurbishment and upgrading to ensure efficient, safe and sustained operation, which required additional investment. Based on a “remaining life” assessment conducted at that point, as well as a lifecycle cost analysis of benefits and costs, proposed changes were found to be very attractive. Process changes included:
Equipment and hardware changes included:
After the transition to MDEA, stringent control of residual H2S, and reintroduction of the steam desuper heater, the corrosion rate dropped to less than one-fifth of the previous level, and the tube-cutting problem disappeared. Use of SS tubes could have been another viable solution, but this was not considered since the feed gas often contained high chlorides from the wells. At high reboiler temperatures, these chlorides are highly detrimental to SS. Also, SS was determined to be 2.5–3 times costlier than carbon steel (CS).
The debottlenecked plant has been running for more than 20 yr at 133% (150 MMscfd over its nameplate capacity), at a much higher efficiency and plant availability, and without any major incidents, lost-time injuries or extended shutdowns.
HSE issues in debottlenecking. Any debottlenecking operation invariably results in some amount of departure from the plant’s original design premises and operating envelope. For this reason, the original safety procedures, protection philosophy, test certificates, etc., will require a fresh review.
Lessons learned from case study. This model case demonstrates how good planning and effective technical applications can bring major benefits to an existing process plant through low-cost, fast-track execution. Several important lessons can be taken away:
Challenges not to be underestimated. Some seemingly innocuous and trivial challenges may deter debottlenecking ventures, if not addressed early. Examples of such challenges include:
Noise studies are critical in determining practical, cost effective solutions for any application. Elixirs engineers can develop a noise study to analyze the source of noise and its impact on the environment. A detailed noise study includes noise modeling which enables our engineers to design custom mitigation to meet the acoustical requirements of the project.
When noise studies are completed during the early stages of a project, noise control can be incorporated into the design and schedule of the job in the most high-performance, cost-effective manner. This proactive approach is the best way to ensure that noise control is designed and implemented efficiently, preventing any problems and cost penalties that could occur during operation.
Sound assessment or noise mapping studies are mandatory to many projects, during pre-construction phases, construction, post-construction compliance demonstration and complaint resolution.
We have developed noise studies in a range of industries such as oil & gas, mining, power generation, manufacturing, wildlife protection, real estate development and entertainment. We have determined solutions for thousands of different equipment types including drilling rigs, compressors, pumps, generators, trucks and construction equipment. Our team of acoustics industry specialists have completed hundreds of many in industries including:
We can perform all acoustics tasks, including:
Examples of Noise Studies:
Mitigation Design PlansWe use industry-leading sound level meters (ANSI S1.4 type 1 certified) for field measurements. We perform predictive modeling using CadnaA and CadnaR, SoundPlan and others based on best practices for each industry.
Our team creates 3-D noise models of a facility and surrounding areas, based on equipment-specific noise data, field measurements and geographical information. The modeling allows our team to quickly evaluate noise impacts for various acoustical scenarios and mitigation options at on-site, property line or far-field locations.
In recent years, even work environments that are considered low-risk for injuries have begun conducting thorough ergonomic assessments. That’s because, while impact injuries and other serious injuries in the workplace are in decline, musculoskeletal disorders (MSDs) related to repetitive stress are on the rise.
Performing a comprehensive ergonomic assessment is the first step for employers who want to reduce absenteeism related to back pain and other MSDs.
What is an Ergonomic Assessment?
An ergonomic assessment, also called an ergonomic risk assessment, is an objective measure of the risk factors in your work environment that may lead to musculoskeletal disorders or injuries among your workforce.The goal of an ergonomic assessment is to identify these risk factors and quantify them so that you can make measurable improvements in the work environment. A thorough ergonomic assessment is the foundation for creating a safer, healthier, less injury-prone workplace and improving overall workplace wellness. After conducting an ergonomic assessment, HR can take data-backed steps to reduce injury and increase comfort in their workplace. Some possible modifications for the office could include providing standing desks, adjustable chairs and workstations, footrests, ergonomic keyboards, and lumbar support. Manufacturing and industrial companies can improve the ergonomics for their employees by providing anti-fatigue standing mats, adjustable workstations, occupational therapy, and training to improve neck and shoulder posture.
Steps for Conducting an Ergonomic Assessment in the Workplace
At its core, conducting a successful ergonomic assessment is a simple process: Evaluate the work environment and evaluate how your workforce interacts with that environment. Of course, there’s more to it than that. But you should keep these broad goals in mind as you begin your ergonomic assessment so that you can analyze the specifics without getting bogged down in irrelevant details. Here are five foolproof steps for performing a successful ergonomic assessment:
1. Review any Existing Data
The first step to any ergonomics assessment is to take a workplace history and ensure that you understand your baseline. Look at claims data, workplace injury reports, worker’s compensation reports, first aid logs, and any other data you have available to become familiar with any work-related injuries or other incidents that have occurred at your workplace. As you’re reviewing this data, identify any higher-risk activities or departments as well as common injuries and complaints. This will help you focus your ergonomics assessment and improvement efforts on areas where you will see the most results.
2. Choose your Tools
During the final three steps of your ergonomics assessment, you’re going to gather and analyze current data about your workplace and workforce. Before you do this, it’s important to take a step back and determine how you will measure this data. Fortunately, you don’t have to invent these ergonomics measurements on your own. There are well-respected ergonomics assessment tools available in the public domain that have been developed by organizations such as the National Institute of Occupational Safety and Health (NIOSH). Here are some of the best available ergonomics assessment tools:
Most of these tools are easily accessible online and several have now developed mobile apps as well. Choose the tools that apply to your workplace or facilities and use these as the basis for gathering your objective data.
3. Gather Subjective Data
Rather than jumping right in with your chosen tools and measuring ergonomic risk factors, we recommend starting with a hands-on, subjective evaluation of your current workplace. Begin by walking the floor or the offices to get a real-life understanding of the environment your employees are working in and making notes about any problem areas you see. Remember to be critical and look at your workplace the way an outsider might see it—come to it with fresh eyes. During your walk-through, pull employees aside for a quick conversation about their working conditions. By involving your employees in the process, you can increase the likelihood of early buy-in and support for any future changes. This step will also yield valuable, first-hand accounts and insights that you may not be able to get in any other way. Be sure to explain your objectives thoroughly and encourage open, honest feedback. Ask your employees questions such as:
In addition to face-to-face conversations with individual employees, larger workplaces may want to conduct an employee comfort survey to gather more direct feedback.
4. Gather Objective Data
After you’ve reviewed your work injury history, walked your workplace, and solicited direct feedback, use all of that information to develop a prioritized list of work activities and departments that you need to evaluate. Use the ergonomics assessment tools you’ve chosen to measure your risk factors and complete your objective evaluation.
5. Analyze All Data and Prioritize Risk
Finally, pull all information and insights together to create a prioritized list of risk factors and risk reduction opportunities. Analyze your existing data as well as the new subjective and objective data you gathered during the assessment in its entirety and by task and department. Identify key insights and opportunities for risk mitigation, and prioritize these opportunities by the potential for injury and injury severity. We also recommend identifying areas for short-term and long-term impact. Once you’ve completed these five steps, you’ll have developed a thorough, actionable report of all ergonomic risk factors. You’re ready to create a strategy to reduce these risks and improve the ergonomics at your workplace.
The need of Ergonomic Workplace Assessment
Poor working postures, repetitive tasks and heavy workloads can lead to increased risk of workplace injuries. An ergonomic workplace assessment can identify these risk factors by using a variety of data capture and risk assessment tools.
By undertaking an ergonomic workplace assessment, COPE can assist you reducing the risk of injuries and accidents to your employees, improve productivity and improve organisational wellbeing.
Why Undertake An Ergonomic Workplace Assessment?
By performing an Ergonomic assessment, your business can benefit from:
We will send a skilled Chartered Ergonomist to conduct a detailed workplace ergonomics survey or assessment using appropriate and relevant risk analysis tools. These tools include assessment tools like:
The ergonomist will then present the findings in a written report and identify wider issues for further study. The recommend ergonomic interventions are prioritised by “most gain/least cost”.
We can also assist with implementation of changes either by the organisation itself or with additional input from engineers, designers, industrial hygienists, etc. Help with ongoing trials and evaluation of effectiveness of improvements.
Hydraulic analysis refers to the technologies to measure, analyze and investigate the water current, water quantity, water pressure and other items in water pipes, pipelines and rivers, etc. In the case of water pipes, for example, the water flows that complexly change in accordance with such influencing factors as the pipe diameter, the length of conduit lines and the number and shape of the branches are clarified by verifications through numerical calculations, analysis models and simulators, etc.
Elixir Engineering the expertise and facilities for undertaking detailed hydraulic studies incorporating:-
The analysis results are utilized for piping network designs of water supply and sewage services, river planning for constructing dams and bridges, and flood control and water utilization planning, among other applications. For reservoirs and water channels, pumps and gates can be controlled in an optimum manner based on the data obtained from hydraulic analysis.
In recent years, hydraulic analysis is also utilized for simulating tsunamis (tidal waves) and floods in preparation for mega disasters, as well as for predicting damages from disasters, planning countermeasures and preparing disaster prevention maps.
Pulsation study, mechanical review and frequency avoidance analysis, forced response analysis (as required); according to API 618 / API 674, API 688 and International Best practice guideline.
A pulsation study by Elixir Engineering goes far beyond examining your pipes. Complex compressor systems are subject to comprehensive influences that must be viewed just as comprehensively.
We keep an eye on all excitation and amplification mechanisms. We watch out for overflowing line branches and valves. We consider vortex shedding and repercussions on the piping system. We always react in time, e.g. using optimised pulsation dampeners or by adjusting pipe routing. This way, you will be able to look at your pipes with satisfaction throughout the planning stage and beyond. You’ll always know just what to do.
Our pulsation study will enable you to create optimised conditions for performance and service life, e.g. of your machine and can avoid further damage to connected plant parts.